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’ INTRODUCTION

The use of mixtures is not a new concept in drug discovery; for
example, approximately a 1,000 extracts derived from plants and
used for the treatment of ailments are written about on tablets
dating back to 2600 BC.1 In modern drug discovery efforts
mixtures are still being assessed to identify active compounds.
These mixture samples include natural product extracts as well as
systematically arranged mixtures of many compounds (such as
mixture-based libraries2,3) and mixtures of few compounds such
as cassette dosing and pooling.4-6 In all these methods there is
the need to distinguish the activity of one mixture sample from
another. The activity of a mixture is of course driven by the indi-
vidual components comprising the mixture. To this extent it is
critical to understand how the individual components of a
mixture contribute to the overall activity of the mixture sample.
The predictive capabilities of averaging models on such mixtures
are examined here using 36 case studies from 8 different pub-
lications.

’METHODS

The use of the harmonic mean as a method of modeling the
activity of a mixture, given the activity of that mixture’s consti-
tuents, is not new.7-11 As first described by Finney,7 the use of
the harmonic mean as an averaging method is most mathema-
tically suitable to model conditions based on the assumption of
simple independent action. In fact, previous studies10,11 have
used the harmonic mean as a metric for determining the extent to

which simple independent action is present in a mixture. Its
usefulness when applied to modeling the behavior of mixture-
based combinatorial libraries associated specifically with drug
discovery, however, is worthy of study. In particular, the effect of
the mathematical properties of the harmonic mean on the
efficacy of the use of mixture-based combinatorial libraries in
drug discovery merits explicit exploration. This study therefore
begins with a comparison of how the harmonic mean differs from
other classical averaging methods, and these methods’ relative
accuracies when applied to biological data where the assumption
of simple independent action is appropriate.

The classical methods of averaging compared herein are the
arithmetic mean, the geometric mean, and the harmonic mean.
The arithmetic mean is defined by the equation:

A ¼ ∑
N

i¼ 1
fiXi

where fi is the proportion of the i-th mixture constituent with
dosing point Xi. N is the total number of mixture constituents; if
constituents are present in equal numbers, then fi = 1/N for all i.
Similarly, the geometric mean is given by

G ¼ 10
∑
N

i¼ 1
fi logðXiÞ
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and the harmonic mean by

H ¼ N

∑
N

i¼ 1

fi
Xi

Use of the arithmetic mean has been applied to simulated
combinatorial libraries.12 The geometric mean was calculated
as an additional point of comparison, since it represents the use of
the arithmetic mean on, for example, log10(IC50) values. In this
study, because of the synthetic methods used to prepare the
mixtures,13,14 we assume that mixture constituents are present in
equal proportions.

To demonstrate the relative effectiveness of the three above
additionmodels, we use historical data which utilized the iterative
process of deconvolution of mixture based libraries13-20 re-
ported by our laboratories and other groups. These data are
ideal to compare the performances of each averaging method as a
model for the activity of mixtures, because both the IC50 value of
each of the mixtures and all of the constituent submixtures (or
individual compounds) in most cases were determined and have
been reported. In total, 36 different mixtures, each consisting of 4
to 19 constituents, were analyzed. The number of compounds in
the constituents of the mixtures studied ranged from 1 to 6,859.
In most cases, the measured IC50 value was reported and was
used for this analysis. For those constituents whose IC50 is large
and is only published as a lower bound, we use this lower bound
as that constituent’s IC50 if it is greater than the best IC50 of the
previous iterative step. For example, in Houghten et al.13 the
mixture Ac-DVPAXX-NH2 is reported as having an IC50 value
“>1,400 μM,” and Ac-DVPXXX-NH2 has a reported IC50 value
of 41 μM, which is less than 1,400 μM, so the mixture Ac-
DVPAXX-NH2 was assigned a value of 1,400 μM . In contrast, in
Davis et al.19 (egCB)(dG)XXT has a reported IC50 of “>10 μM”
and (egCB)XXXT has a reported IC50 value of 40 μM, which is
greater than 10. Data such as this is discarded since no averaging
method could return an accurate result; if the constituents were
assigned values which made them all more active than the
mixture itself, the average would necessarily have to be as well.
For those constituents whose IC50 was too large to have any
published data, we assign to them the IC50 of the least active
measured compound. For example, in Dooley et al.14 the IC50

value of Ac-rfgxxx-NH2 is reported as “ND” since it was inactive
at the highest dose tested. It is thus assigned a value of 69,000 nM,
that of the least active measured constituent.

’RESULTS

For each mixture, the constituents of that mixture were added
using each of the three addition models, and the results were
compared to actual experimentally obtained mixture value. An
example of these data, along with the outputs of each of the three
addition models, is provided in Table 1. A summary of the results
from all sources is presented in Table 2. The data in its entirety is
in the Supporting Information, Table S1a-h. Data points which
were altered to have assigned values (as described above) are
shown in italics.

Because the data is taken across mixtures with varying com-
plexities and activities, the numerical scale for each data point
varies widely. If the error in a model-predicted value were simply
the difference between the prediction and the experimental value,
they would not be numerically comparable. Therefore, the error

was scaled by the experimental value, so that

Scaled Error ¼ jðexperimental IC50Þ- ðmodel IC50Þj
experimental IC50

Thus, the scaled error is as a fraction of the experimental value.
The scaled error for each prediction is also included in Tables 1
and 2. The average scaled error for the arithmetic mean model is
144.59, the average scaled error for the geometric mean model is
59.02, and the average error for the harmonicmeanmodel is 0.47.
Thus the harmonic mean was the only addition model that
consistently was capable of capturing to within an order of
magnitude the IC50 value of the resultant mixture given the
IC50 value of that mixture’s constituents. The maximum harmo-
nic mean scaled error was only 3.71, as compared to maximum
scaled errors of 916.03 for the geometric mean and 2061.38 for
the arithmetic mean. The harmonic mean has lower scaled errors
than both other methods for all but five of the analyzed mixtures;
in those five cases, the scaled error is below 0.60 for the harmonic
mean, indicating the harmonic mean gave reasonably good
approximations in these cases as well.

To compare the ability of each of the three averaging models
to predict the experimental mixture IC50 value, a least-squares
linear regression was performed. Least-squares linear regression
allows each model to be evaluated as a whole, rather than looking
at individual predictions. Because of the large difference in scale
among the data points, the regression was performed on the
logarithms of the IC50 values. The functional form of the fit

Table 1. Example of Data Used in This Study14

mixture IC50 nM

Ac-rfwinx-NH2 110

constituent compounds IC50 nM

Ac-rfwink-NH2 18

Ac-rfwinr-NH2 27

Ac-rfwina-NH2 37

Ac-rfwins-NH2 130

Ac-rfwinp-NH2 130

Ac-rfwinn-NH2 130

Ac-rfwinq-NH2 140

Ac-rfwing-NH2 170

Ac-rfwinm-NH2 180

Ac-rfwinh-NH2 200

Ac-rfwint-NH2 230

Ac-rfwihy-NH2 460

Ac-rfwinl-NH2 680

Ac-rfwinf-NH2 770

Ac-rfwinw-NH2 790

Ac-rfwine-NH2 960

Ac-rfwind-NH2 1,100

Ac-rfwinv-NH2 1,300

Ac-rfwini-NH2 5,600

mean predicted value scaled error

arithmetic 687 5.24

geometric 265 1.41

harmonic 106 0.04
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curves was therefore

logðexperimental IC50Þ ¼ a1 logðmodel IC50Þ þ a0

Clearly, for a perfect model log(experimental IC50) = log(model
IC50), and so a measure of how well the addition model is
predicting the mixture IC50 is how close a1 is to one and a0 is to
zero. Additionally, each fit also includes an R2 value. The R2 value
is a measure of the goodness-of-fit, and represents the percentage
of variance in the data that is explained by the model. For the
arithmetic mean model, a1 = 0.7250, a0 = -0.2291, and R2 =
0.8253. For the geometric mean model, a1 = 0.7742, a0 =
-0.1685, and R2 = 0.8543. For the harmonic mean model, a1
= 1.0184, a0 = -0.0679, and R2 = 0.9843. Plots of each of the
addition model’s predictions against the experimental values,
along with the least-squares linear regression best fit line, are in
Figure 1. The harmonic mean model both provides a better fit to
the data given its superior R2 value, and also provides a slope and
intercept very close to ideal.

’ IMPLICATIONS OF A HARMONIC MEAN MODEL

The above analyses strongly suggest that the theory7,9,10 which
predicts the harmonic mean as the averaging methodology for
mixtures under the assumption of simple independent action is
valid in the data analyzed above. It should be noted that in the
data surveyed above, the complexity of both the parent mixture
and its constituents varies drastically from case to case. See
Table 3: this variation does not affect the accuracy of the har-
monic mean, which yielded significantly more accurate results
than the other two standard averaging methodologies studied. In
most cases the harmonic mean predicted the experimental results
with high precision. This fact strongly suggests that the harmonic
mean is an appropriate way of modeling the behavior of many of
the mixture-based combinatorial libraries used in basic research
and drug discovery.12-21 The ability to predict the outcomes of
combinatorial mixture-based experiments is useful for a variety of
practical dosing and experimental design applications, such as
deviation from the harmonic mean as a metric for determining

Table 2. Summary of the Results of the Prediction Models

reference mixture value arithmetic mean scaled error geometric mean scaled error harmonic mean scaled error

Houghtenet. al.13 250 1,093 3.37 827 2.31 370 0.48

41 1,322 31.26 1,016 23.79 75 0.83

4.4 1,322.2 299.51 887.2 200.63 6.8 0.55

0.38 11.19 28.44 4.90 11.89 0.44 0.17

Dooley et. al.14 14,000 22,642 0.62 12,414 0.11 5,618 0.60

1,500 4,663 2.11 2,494 0.66 1,586 0.06

480 2,049 3.27 1,122 1.34 729 0.52

110 687 5.24 265 1.41 106 0.04

Dooley et. al.15 2,701 14,962 4.54 7,989 1.96 3,954 0.46

907 1,323 0.46 1,077 0.19 828 0.09

106 316 1.99 231 1.18 151 0.42

24 30 0.26 19 0.20 13 0.45

Pinillaet. al.16 1,000 738,795 737.80 168,921 167.92 865 0.14

400 4,267 9.67 3,118 6.79 1,882 3.71

48 69 0.43 40 0.17 25 0.49

6.6 9.1 0.38 7.7 0.17 6.9 0.04

Houghtenet. al.17 20,000 357,916 16.90 136,593 5.83 13,557 0.32

860 1,089,794 1,266.20 560,506 650.75 1,705 0.98

90 33,730 373.78 4,149 45.10 91 0.01

6 15 1.45 12 1.04 10 0.72

Appelet. al.18 200,000 1,253,690 5.27 829,323 3.15 83,762 0.58

7,329 840,278 113.65 208,754 27.48 5,813 0.21

376 514 0.37 456 0.21 407 0.08

257 299 0.16 255 0.01 230 0.11

12,780 622,127 47.68 292,158 21.86 7,481 0.41

408 841,453 2,061.38 374,148 916.03 702 0.72

37 6,120 164.41 788 20.29 27 0.28

Davis et al.19 30 83 1.75 73 1.45 61 1.03

20 41 1.04 36 0.82 30 0.50

Ecker et al.20 4 7.6 0.91 4.7 0.18 1.7 0.57

0.5 7.5 14.08 3.5 6.00 0.6 0.15

0.15 0.62 3.13 0.42 1.82 0.24 0.57

0.08 0.28 2.53 0.18 1.22 0.11 0.37

0.05 0.08 0.65 0.07 0.48 0.06 0.26

0.03 0.04 0.35 0.04 0.27 0.04 0.17

0.02 0.03 0.38 0.02 0.17 0.02 0.02
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the existence of synergy or antagonism.10,11 In the context
of positional scanning, where each position is a different
arrangement of the same constituents, the harmonic mean of
the IC50 values at each position ought to equal one another.
For example, Dooley and Houghten21 presents positional
scanning data for six positions, which has been reproduced

in Supporting Information, Table S2. Each position consists of
18 mixtures, each of which contains 1,889,568 individual com-
pounds. The harmonic means of the IC50's of these mixtures at
each position are 340, 271, 168, 248, 263, and 211. Thus it can
be seen that the maximal scaled error in this set is only 1.02,
and that most pairwise comparisons have significantly smaller
scaled errors.

In addition to the above, the mathematical properties of the
various averaging methods can help validate the usage of com-
binatorial mixture libraries in basic research and drug discovery
and explain the impressive successes the process has already
achieved.2-6,13-21 The harmonic mean model differs from the
other models primarily in its treatment of extreme numerical
ranges within the data. Here the range of the data is defined to be
the ratio of the highest constituent IC50 value to the lowest. A
log-log plot of this value versus the scaled error for each of the
three addition models is shown in Figure 2. This plot shows how
the harmonic mean is able to outperform the other addition
models: while at low ranges (with a ratio of most to least active
less than 100) all three methods perform similarly, the scaled
error of the arithmetic and geometric models rises steadily as the
range increases, while the harmonic mean maintains a similar
level of scaled error throughout. In particular, the harmonic mean
is more influenced by active compounds having smaller IC50

values than the other addition methods; that the experimental
data is well-predicted by the harmonic mean indicates that the
experimental behavior of mixture based combinatorial libraries
behaves similarly, with active compounds driving the activity
rather than inactive compounds diluting it.

To further elucidate this point, we consider the hypothetical
situation in which we define an active compound to have a fixed
IC50 value of R and an inactive compound to have a fixed IC50

value of β. Then the IC50 of a mixture containing NR active
compounds and Nβ inactive compounds is given by

AR, β ¼ NRRþNββ

NR þNβ

for the arithmetic mean model,

GR, β ¼ 10ðNR logðRÞ þ Nβ logðβÞÞ=ðNR þ NβÞ

for the geometric mean model, and

HR, β ¼ NR þNβ

NR

R
þNβ

β

for the harmonic mean model. From these equations, one can
evaluate the ability to detect active compounds in a mixture
governed by the harmonic mean model, and compare it to the
abilities of the arithmetic and geometric mean models.

For example, if a single highly active compoundwith an IC50 of
10 nM (R = 10 and NR = 1) were in a mixture with a number of
inactive compounds with IC50's of 10,000 nM (β = 10,000), the
aforementioned equations would yield a predicted value for the
IC50 of the resultant mixture. Figure 3 is a plot of the number of
inactive compounds versus the resulting activity of the mixture,
given each of the averagingmodels. As is clear from the graph, the
IC50 of the resultant mixture increases much more slowly for the
harmonic mean than for the other two methodologies; therefore,
mixtures that are modeled by harmonic mean averaging are
projected to be significantly more active than if the arithmetic or

Figure 1
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geometric mean were used. A mixture comprised solely of poorly
active compounds (all having an IC50 of 10,000nM) would have
an IC50 of 10,000 nM in this scenario, so in order for the active
compound to be detected the resulting mixture must have an
IC50 value small enough to distinguish itself from the 10,000 nM
mixture inclusive of experimental error. For example, if the
experimental error is approximately 20%, then to ensure the
mixture containing the active compound is more active than the
10,000 nMmixture when tested, it must have a true IC50 value of
6,600 nM or below. The arithmetic mean model would predict
that only three 10,000 nM compounds would be needed to make
the mixture with the 10 nM compound have an IC50 greater than
6,600 nM. Similarly, the geometric mean model would predict
that only seventeen 10,000 nM compounds would be needed.
In contrast, the harmonic mean model indicates that 1,939
compounds, each having an activity of 10,000 nM, would be
needed. Since these numbers are independent of scale, these
results may be restated: Under the arithmetic mean model, a
mixture containing less than 25.0% active compounds would

not be detected. Under the geometric mean model, a mix-
ture containing less than 5.5% active compounds would not be
detected. But under the harmonic mean model, a mixture
containing 0.052% of active compounds would still be detect-
able. It should be noted that this observation can be applied to
mixtures in which the constituents comprising the mixture are
not present in the same concentration as in the case of natural
product extracts. In other words as long as 0.052% of the total
composition of the mixture contains an “active component”
that mixture will be distinguishable from a totally inactive
mixture sample.

It is also possible to use the above arguments in a reversed
fashion. If we continue with the above example in which an
inactive compound has an IC50 of 10,000 nM, and we assume the
validity of the harmonic mean, then given a mixture activity it is
possible to mathematically derive a range of activity percentages
associated with different activity levels of individual compounds.
Such relationships are plotted in Figure 4 for differing mixture
activity values. A mixture with an IC50 of 1000 nM, for example,

Table 3. Mixture Complexities and Prediction Model Errors

reference mixture constituents compounds per constituent arithmetic scaled error geometric scaled error harmonic scaled error

Houghten et al.13 18 5832 3.37 2.31 0.48

18 324 31.26 23.79 0.83

18 18 299.51 200.63 0.55

18 1 28.44 11.89 0.17

Dooley et. al.14 19 6859 0.62 0.11 0.60

19 361 2.11 0.66 0.06

19 19 3.27 1.34 0.52

19 1 5.24 1.41 0.04

Dooleyet. al.15 19 6859 4.54 1.96 0.46

19 361 0.46 0.19 0.09

19 19 1.99 1.18 0.42

19 1 0.26 0.20 0.45

Pinillaet.al.16 19 361 737.80 167.92 0.14

19 361 9.67 6.79 3.71

19 19 0.43 0.17 0.49

19 1 0.38 0.17 0.04

Houghtenet. al.17 19 6859 16.90 5.83 0.32

19 361 1,266.20 650.75 0.98

19 19 373.78 45.10 0.01

19 1 1.45 1.04 0.72

Appelet. al.18 19 6859 5.27 3.15 0.58

19 361 113.65 27.48 0.21

19 19 0.37 0.21 0.08

19 1 0.16 0.01 0.11

19 361 47.68 21.86 0.41

19 19 2,061.38 916.03 0.72

19 1 164.41 20.29 0.28

Davis et. al.19 12 144 1.75 1.45 1.03

12 12 1.04 0.82 0.50

Eckeret.al.20 4 4096 0.91 0.18 0.57

4 1024 14.08 6.00 0.15

4 256 3.13 1.82 0.57

4 64 2.53 1.22 0.37

4 16 0.65 0.48 0.26

4 4 0.35 0.27 0.17

4 1 0.38 0.17 0.02
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may contain 1% of individual compounds with IC50's of 10 nM,
or 0.1% of individual compounds with IC50's of 1 nM. The
maximal IC50 to guarantee detectability in this example is again
6600 nM, and so we can see such a mixture may contain 0.5% of
individual compounds with IC50's of 100 nM, 0.05% of individual
compounds with IC50's of 10 nM, or 0.005% of individual
compounds with IC50's of 1 nM. Conversely, a mixture that is
indistinguishable from inactive because its IC50 exceeds 6600 nM
cannot even contain 0.5% of individual compounds with IC50

values of 100 nM, justifying the exclusion of such a mixture in
further testing.

’DISCUSSION

The analyses presented here have significant implications on
how mixtures can be used in drug discovery and, in part, explains
the previous successes of research efforts where mixtures have

been used, such as natural product extracts and systematically
arranged mixtures.2,3,13-23 The active compounds isolated in
various natural product studies24-27 are often a very small
percentage of the original material, and yet are still detectable.
A clear distinction in the activity of mixtures containing highly
active compounds and those that do not has been observed even
in cases where the mixtures contained thousands of separate
components. In the past, one of the reasons for this distinction
has been posited as an abundance of similarly active compounds
in a given mixture.28 While this can be a valid statement in
systematically arranged mixtures, it is surely not necessarily true
in natural products, and to a large degree the reason for this
distinction can rather be attributed to the harmonicmeaning of the
individual components. Indeed, the reactions occurring in living
organisms mirror qualitatively this behavior, with only trace
amounts of specific substances playing vital biological roles.29

Figure 2

Figure 3
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There are several additional applications of the harmonic
mean currently being explored for future studies. As discussed
above, in synthetic libraries arrayed in positional scanning
format, the harmonic mean of the IC50 values at each position
ought to equal one another; therefore, the integrity of the
synthesis of a positional scanning library may be determined
by comparing the harmonic means at each position and looking
for significant deviation. A similar usage for the harmonic mean
may be applied to pooling strategies. Algorithms could be
developed for determining how to pool compounds in a given
library in such a way as to identify large deviations from predicted
harmonic means. Such deviations may indicate possible pro-
blems coming from pipetting errors or aggregation, and so these
samples could be flagged for retesting. Finally, the harmonic
mean could be used to determine if multiple compounds act in a
simple competitive manner when tested in a given assay. If
constituent compounds of known concentration are mixed, a
substantial deviation of this mixture’s activity from the expected
harmonic mean could provide insights into possible synergy,
antagonism, or multiple paths of action.

Although in this report the analysis was restricted to biological
assays where a simple independent action is assumed, theory7,9,10

suggests that, qualitatively, the harmonic mean’s tendency to
weight active compounds heavily is more widely applicable. The
implications of other mathematical models, such as those for
situations which are synergistic or anti-synergistic in nature, on the
behavior of mixture-based combinatorial libraries associated with
basic research and drug discovery are also currently being explored.
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’NOTE ADDED AFTER ASAP PUBLICATION

There was an error in the equation describing harmonic
mean in the version of this paper published March 11, 2011.
The correct version published March 25, 2011.


